

Trace Gas Re-Processing Activities at NOAA/NESDIS

Chris Barnet & Mitch Goldberg NOAA/NESDIS/STAR Mar. 8, 2006

AIRS Science Team Meeting

Walter Wolf: Near Real Time Processing & Gridding System

Lihang Zhou: Regression Retrieval & Near Real Time Web Page

Eric Maddy: CO₂ retrieval, tuning, vertical averaging functions.

Xiaozhen Xiong: CH₄ retrieval

Xingpin Liu: Re-processing, Statistics, Trace gas web-page

Fengying Sun: New RTA upgrade installation & checkout

Jennifer Wei: START experiment laison & O₃ retrieval

Murty Divakarla: Operational sonde database (T(p) & q(p) biases)

Topics

- PGE Issues with regard to trace gases
- SO2 flag and Product Development
- Reprocessing of NOAA/NESDIS gridded products.
- CH4 Product & Validation Efforts
- CO2 Product & Validation Efforts

Retrieval of Atmospheric Trace Gases Requires Unprecedented Instrument Specifications

- Need Large Spectral Coverage (multiple bands) & High Sampling
 - Increases the number of unique pieces of information
 - Ability to remove cloud and aerosol effects.
 - Allow simultaneous retrievals of T(p), q(p), $O_3(p)$.
- Need High Spectral Resolution & Spectral Purity
 - Ability to isolate spectral features → vertical resolution
 - Ability to minimize sensitivity to interference signals...
- Need Excellent Instrument Noise & Instrument Stability
 - Low NE Δ T is required.
 - Minimal systematic effects (scan angle polarization, day/night orbital effects, etc.)

PGE Issues with regard to Trace Gases

- New RTA "wrapper" delivered to GSFC in early Dec. 2005 for incorporation into PGE.
- We accomplished closure on tuning w.r.t. coordinated sondes
 - Mixed use of retrieval and sonde products to compute a tuning in which LW
 & SW agree and radiance tuning is minimized
 - Major impact for trace gas retrievals.
- Datasets for microwave tuning delivered to MIT in late Dec. 2005.
- A number of CO₂ climatologies explored: Simple CO₂ climatology installed for v5.0 at JPL.
- Vertical averaging *estimate* is ready to install into PGE v5.0. Improvements to averaging function anticipated for future PGE upgrades. Suggest Eric Maddy work directly with John Blaisdell and/or Evan Manning to install into PGE.

PGE Issues with regard to Trace Gases

- Ad-hoc model error term has been removed for v5.0
- (Sep. 2005) Recommended that we use information content and residual's in rejection criteria we added this to NOAA QA of trace gas products.
- Add physical error co-variance terms
 - CO2 in T(p) and cloud clearing (installed in PGE)
 - CH4 in q(p): negligible impact, unless we want to use CH4 channels in q(p) retrieval I suggest we ignore this for now.
 - HNO3 in surface and CH4 and q(p): not needed unless we use HNO3 channels in q(p) and surface retrieval
 - P_{surf} error in T(p) and q(p) retrievals: TBD (post v5?)
- Ozone Regression attempt at new training
 - Needs more work not ready for v5.0

SO2 flag has generated a lot of interest at NOAA and internationally

- Augustine (1/13,14,29/06, 2/7/06) & Manam (2/27-28/06) detected
- Washington Volcanic Ash Advisory Center (VAAC, W-vaac@noaa.gov) requested and now receives and re-broadcasts AIRS SO2 flag.
 - May be used for aircraft early warning.

Fred Prata, Norwegian Institute for Air Research, is generating SO2 retrievals from AIRS & HIRS - we are working with Fred to incorporate his retrieval into

the near real—time system

AIRS SO2 flag

SO2 Retrieval (Courtesy of Fred Prata

Re-processing using AIRS Golf-ball Subsets

- This activity utilizes the near real time AIRS processing system developed by Mitch Goldberg, Walter Wolf, and Lihang Zhou
- The complete AIRS golf-ball closest to the mid-point of a fixed 3° x 3° uniform grid is extracted and saved
 - 120 longitude by 61 latitude cells
 - Separate file for ascending and descending orbits
 - AIRS, AMSU, and HSB L1b
 - ECMWF, and GFS forecast files
 - MODIS L1b on AIRS FOV's available since 11/04 (clear & cloudy)
 - However, incorrect spatial footprint was used. Corrected Jan. 06
- $\approx 2 \times 6500 = 13,000$ golf-balls saved per day since Aug. 2003
 - -13,000/324,000 = 1:25 of full-resolution data.
- Reprocessing Advantage
 - 2.5 years can be re-processed in a few days (on 8 generic cpu's)
 - Small systems (< 16 TB) can hold entire dataset
 - L1b radiances, ECMWF, AVN, and multiple sets of ret products.

Reprocessing of trace gas products

- Three runs emulating v4.0, v4.2 (new ε), v4.7 (new RTA & tuning) have been finished and analyzed.
 - Analysis and modifications to the retrieval system based on this analysis are being performed.
- A new run emulating a "v5.0" system will be started in a few weeks.
 - Result of this run will be provided to modelers with preliminary internal vertical averaging analysis.
- Web page display of products (see Sep. 27, 2005)
 - Has scientific value to locate interesting features.
 - Unfortunately our IT security issues at NOAA prevent outside user access at this time we are trying to resolve this.

Methane Sources

Ref.: Lelieveld, 1998 & Houwelling 2002 (600 Tg total)

Note: Approximately 50% of sources are anthropogenic

Trees (Keppler et al. 2005) may contribute 62-235 Tg (10-35%), mostly in tropics

AIRS CH₄ Kernel Functions are Sensitive to H₂O(p) & T(p)

$TPW = 0.53 \text{ g/cm}^2$ $O_3 = 325.4 \text{ DU}'_{Z=12 \text{ km}}$ $CH_4 = 1716 \text{ ppb}$ Pressure z=4 km **Isothermal** vertical structure weakens sensitivity.

Mid-Latitude

Tropical

Comparisons to CMDL Aircraft Observations

NOTE: We needed to adjust RTA transmittance tuning by a factor of 1.025 to achieve agreement with CMDL

Comparison of CH4 product & CMDL Continuous Ground Site

CMDL Poker Flats, Alaska

Seasonal cycle is a function of altitude

7.5 km 385 mb

> 5.5 km 500 mb

> 1.5 km 850 mb

Surface Flasks (Barrow)

How much of our CH4 signal is from stratospheric air?

Dobson-Brewer circulation

Can depress high latitude, high altitude methane signals in winter/spring time-frame.

circulation

JANUARY

CH₄ (ppmv),

UT/LS region in high latitudes has "older" air.

We will
explore tracer
correlations to
unravel
surface vs
stratospheric
sources.
(working w/
L. Pan)

Also providing the vertical information content to understand CH4 product

AIRS mid-trop measurement column

CH4 total column f/ transport model (Sander Houweling, SRON)

Fraction Determined from AIRS Radiances

Peak Pressure of AIRS Sensitivity

29 Months of AIRS Methane Product

AIRS mid-trop measurement column

CH4 total column f/ transport model (Sander Houweling, SRON)

Fraction Determined from AIRS Radiances

Peak Pressure of AIRS Sensitivity

Carbon Dioxide and the Carbon Budget

- Lifetime in atmosphere is ≈ 100 years
 - conversion to limestone (CaCO₂) is main sink.
- $+5.5 \pm .3$ GT-C/yr from fossil fuel emissions
 - A car emits 5 lbs of C per gallon, at 25 m/g that is a charcoal briquette every ¼ mile (Gerry Stokes)
- $+1.6 \pm .8$ GT/yr from biomass burning
- Atmospheric concentration is well measured (Charles Keeling, Scripts) + 1.5 ppmv-CO2/yr $= 3.3 \pm .1$ GT-C/yr
- Huge Terrestrial Annual Exchange (photosynthesis/respiration), 90 GT-C/yr
- Huge Ocean Exchange (phytoplanckton life cycle),
 - 90 GT-C/yr exchange
 - NET sink of $-2.0 \pm .2$ GT-C/yr
- -1.8 ± 0.9 GT-C/yr unknown sink
 - Most like terrestrial or unknown ocean process.

LW Thermal CO₂ Kernel Functions are also Sensitive to H₂O, T(p), & O₃(p).

Mid-Latitude

Tropical

Use of SW channels

- With recent improvements to RTA and tuning we can now use more SW information
- Care must be taken to separate temperature and CO₂ information in the minimization context.
 - Current algorithm uses SW for lower trop T(p) and LW for upper trop T(p) & CO2
 - Current algorithm does not utilize any model information for T(p), q(p), or O3(p), i.e., everything except surface pressure is derived from AMSU & AIRS radiances.
 - Microwave does not significantly impact T/CO2 separability due to high noise & side-lobe issues (e.g. AMSU-5 (500 mb) has 0.2 K NEDT, 2 K side-lobe correction.)
- We are looking into utilization of SW channels.

Preliminary Comparisons to CMDL aircraft

- AIRS "golf-balls" matched with CMDL.
 - Usually ≥ 5 hour time difference
 - Limit retrievals
 within 200 km
- Retrieval is average of "good" retrievals
 - 3 50 ret's are used in each dot.
- Investigating outliers

Comparisons to JAL aircraft observations & CMDL MDL model

CMDL Marine Boundary Layer Model

AIRS CO2
retrieval from
GRIDDED
dataset (sparse
spatial sampling
(we need to re-do
this analysis w/
full spatial AIRS)

Matsueda *et al.* 2002 aircraft

Same as before, but in-situ CO2 adjusted by *a-priori* in retrieval

In-situ data is adjusted by the % of *a-priori* in our regularized retrieval. This depresses the seasonal amplitude of the *in-situ* data.

Differences should exist between single level (surface or altitude) observations and AIRS thick layer observations.

Again, to what extent does stratospheric age of air play a role?

Surface measurements (dashed line) and model of 500 mb concentration (solid line)

Brewer-Dobson effect has altitude, latitude, and seasonal variation with a maximum in northern winter.

Model runs of Brewer-Dobson circulation effect are courtesy of Run-Lie Shiaa, Mao-Chang Liang, Charles E. Miller, and Yuk L. Yung

Also providing the vertical information content & comparing CO₂ product with models

CO₂ Model Kawa (GSFC)

Fraction Determined from AIRS Radiances

Averaging Function Peak Pressure

29 Months of AIRS CO₂ Product

CO₂ Model Kawa (GSFC)

Fraction Determined from AIRS Radiances

Averaging Function Peak Pressure

29 month time-series of AIRS products Alaska & Canada Zone (60 ≤ lat ≤ 70, -165 ≤ lon ≤ -90)

29 month time-series of AIRS products Eastern China Zone (20 ≤ lat ≤ 45, 110 ≤ lon ≤ 130)

29 month time-series of AIRS products South America Zone (-25 ≤ lat ≤ EQ, -70 ≤ lon ≤ -40)

NOAA AIRS CO2 Product is Still in Development

- Measuring a product to 0.5% is inherently difficult
 - Empirical bias correction (a.k.a. tuning) for AIRS is at the 1 K level and can affect the CO2 product.
 - Errors in moisture of $\pm 10\%$ is equivalent to ± 0.7 ppmv errors in CO2.
 - Errors in surface pressure of ± 5 mb induce ± 1.8 ppmv errors in CO2.
 - AMSU side-lobe errors minimize the impact of the 57 GHZ O2 band as a T(p) reference point.
 - Bottom Line: Core product retrieval must be flawless.
- We can characterize seasonal and latitudinal mid-tropospheric variability.
- The real questions is whether thermal sounders can contribute to the source/sink questions.
 - Requires accurate vertical & horizontal transport models
 - Having simultaneous O₃, CO, CH₄, and CO₂ products is a unique contribution that thermal sounders can make.

Example: Radiance Differences between v8b (v4.0) and v9e (v5.0) RTA

NOAA/NESDIS Strategy: Use existing operational sounders.

Operational polar-orbiting instruments will provide global soundings in cloudy or clear conditions for the next 20+ years.

- Now: Develop core and test trace gas algorithms using the Aqua AIRS/AMSU/MODIS (May 4, 2002) Instruments
 - Compare products to *in-situ* (*e.g.*, CMDL Aircraft, JAL, INTEX, etc.) to characterize error characteristics.
 - The A-train complement of instruments (e.g., MODIS, AMSR, Calipso) can be used to study effects of clouds, surface emissivity, etc.
- 2006: Migrate the AIRS/AMSU/MODIS algorithm into operations with METOP/IASI/AVHRR (2006,2011,2016)
 - Study the differences between instruments, e.g., effects of scene and clouds on IASI's instrument line-shape.
- 2008: Migrate the AIRS/IASI algorithm into operations for NPP (2008) & NPOESS (2012,2015) CrIS/ATMS/VIIRS. These are part of the "NOAA Unique Products" within the NOAA NPOESS Data Exploitation (NDE) program.
- 2012: Migrate AIRS/IASI/CrIS algorithm into GOES-R/HES/ABI

Trace Gas Product Potential from Operational Thermal Sounders

gas	Range (cm ⁻¹)	Precision	Interference
O_3	1025-1050	10%	H2O, emissivity
CO	2080-2200	15%	H2O,N2O
CH ₄	1250-1370	20 ppb	H2O,HNO3
CO ₂	680-795	2 ppm	H2O,O3
	2375-2395	2 ppm	
SO ₂	1340-1380	1000%	H2O,HNO3
HNO ₃	860-920	40%	emissivity
	1320-1330	25%	H2O,CH4
N_2O	1250-1315	10%	H2O
	2180-2250	10%	H2O,CO
CFCl ₃ (F11)	830-860	20%	emissivity
CF ₂ C1 (F12)	900-940	20%	emissivity
CCl ₄	790-805	50%	emissivity

Working

In Work

Held Fixed

Spectral Coverage of AIRS, IASI, and CrIS

Will Continue our Investigation of Algorithms

- We recently ran a system in which zeroes and infinite components of our regularization were removed.
 - Makes SVD approach equivalent to linear constrained regularization.
 - Results are indistinguishable from current PGE approach.
 - However, Vertical Averaging Functions (VAF) are more robust.

$$egin{array}{lll} m{X}_{j}^{i} &=& m{X}_{j}^{A} &+& ig[m{K}_{j,n}^{T} \cdot m{N}_{n,n}^{-1} \cdot m{K}_{n,j} + m{C}_{j,j}^{-1}ig]^{-1} \cdot m{K}_{j,n}^{T} \cdot m{N}_{n,n}^{-1} \cdot ig[m{R}_{n}^{obs} - m{R}_{n}(m{X}^{i-1}) + m{K}_{n,j} \cdot ig(m{X}_{j}^{i-1} - m{X}_{j}^{A}ig)ig] \end{array}$$

- Experiments with optimal estimation form (Equation above) of minimization.
 - PGE iterative form prohibits accurate assessment of VAF's.
 - Regression as *a-priori* & first guess (O₃) reduces accuracy of VAF's.
 - Use of MIT (for T,q) or climatology/model (O₃,CO,CH₄,CO₂) state as a-priori may reduce outliers due to cloud contamination and/or regression (T,q,O3,ε) interaction with the PGE iterative cloud clearing approach.
- Investigate the use of *a-priori* state and statistics in regularization
 - PGE methodology doesn't utilize statistical relationships (*a-priori* covariance information). What *a-priori* to use is the big issue.
 - Again, this *may* help to eliminate outliers and make VAF's more robust.

Conclusions and Summary

- High spectral resolution operational thermal sounders have the capability of measuring mid-tropospheric concentrations of atmospheric trace gases globally for the next 20+ years.
- CO product is robust and validation experiments are underway (e.g., INTEX, W. McMillan, UMBC)
- CH₄ is more difficult: preliminary analysis appears promising but we need to understand stratospheric vs. surface contributions.
- CO₂ is significantly more difficult and many algorithms are being intercompared. Re-processing of acquired AIRS (30 months, so far) & IASI radiances to optimize algorithm(s) will continue.
- AIRS, IASI, and CrIS may contribute to source/sink determination by simultanously measuring T(p), q(p), O₃(p), CO, CH₄, & CO₂ globally. One impact will be to provide upper air estimate for OCO.
- Working closely w/ CMDL to acquire more aircraft observations
- Other gas products (SO₂, HNO₃, N₂O) are in-work (thanks to Larrabee for incorporating these into the AIRS physics).